

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

CNDO/S Method Interpretation of Ultraviolet Spectra of 4-Nitro and 5-Nitroimidazoles

M. P. Crozet^a; P. Vanelle^a; L. Bouscasse^a; T. Avignon^a

^a Laboratoires Associés au CNRS n° 109 et 126 Faculté des Sciences de St Jérôme Rue Henri Poincaré, MARSEILLE CEDEX 13

To cite this Article Crozet, M. P. , Vanelle, P. , Bouscasse, L. and Avignon, T.(1986) 'CNDO/S Method Interpretation of Ultraviolet Spectra of 4-Nitro and 5-Nitroimidazoles', *Spectroscopy Letters*, 19: 9, 1049 — 1057

To link to this Article: DOI: 10.1080/00387018608069306

URL: <http://dx.doi.org/10.1080/00387018608069306>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CNDO/S METHOD INTERPRETATION OF ULTRAVIOLET
SPECTRA OF 4-NITRO AND 5-NITROIMIDAZOLES

Key Words: CNDO/S, UV Spectra, Nitroimidazole.

M.P.CROZET, P.VANELLE, L.BOUSCASSE and T.AVIGNON

Laboratoires Associés au CNRS n° 109 et 126

Faculté des Sciences de St Jérôme

Rue Henri Poincaré

F-13397 MARSEILLE CEDEX 13

ABSTRACT

The uv spectra of several nitroimidazoles are reported. These experimental results are interpreted using CNDO/S method (Complete Neglect of Differential Overlap for Spectroscopy). Calculations show that observed transitions are $\pi \rightarrow \pi^*$ type transitions.

INTRODUCTION

Ultraviolet spectroscopy has been applied to studies of 1,2-dimethyl-5-nitroimidazole (I), 1-methyl-2-(2,2-dimethyl-vinyl)-5-nitroimidazole (II) and 1-methyl-2-(2-methyl-2-phenyl-vinyl)-5-nitroimidazole (III) (1). The nitroimidazoles as a class of compounds have attracted much attention and are widely used in

different fields of pharmaceutical interest which include anaerobic infections, hypoxic cell radiosensitizers in radiotherapy and possibly as adjuncts with various other anticancer drugs (2). These compounds show two absorption bands at 310-355 nm and at 230-270 nm. The uv spectra of these compounds have been computed using the CNDO/S method to identify the different parts of the molecule related to the transitions. In order to confirm the suitability of the CNDO/S method for the characterization of the uv spectra of this class of compounds, we have also computed 1-methyl-5-nitroimidazole (IV) and two 4-nitroimidazoles: 1-methyl-4-nitroimidazole (V) and 1,2-dimethyl-4-nitroimidazole (VI).

METHOD OF CALCULATION

The method of calculation used in this work is the CNDO/S method following DEL BENE and JAFFE (3) except that the parameter β selected for oxygen atom is that used in the CNDO/2 method with the value -31 e.v. (4).

The configuration interaction was limited to the 30 monoexcited lower energy configurations. We have observed that a more complete configuration interaction with 60 configurations did not change significantly the results.

The geometry used for imidazole cycle has been described by ROCHE (5). The substituents have been placed on the bisectrix of the corresponding bond angles. The different bond-lengths and angles are given in Appendix.

RESULTS AND DISCUSSION

The results show (Tables 1,2 and 3) that the first transition results from a configuration corresponding to the transition of one of the electrons of the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) for all studied molecules. This transition is a $\pi \rightarrow \pi^*$ type transition. It is noteworthy, from the comparison of the theoretical

TABLE 1

Compound λ Oscillator strength Main configuration squared coefficient	Occupied Molecular Orbital	Unoccupied Molecular Orbital
(V) 290 nm 0.2315 0.96		
(VI) 302 nm 0.2168 0.97		
(IV) 301 nm 0.4683 0.97		
(I) 310 nm 0.4927 0.98		
(I) 238 nm 0.0215 0.81		
(I) 222 nm 0.3093 0.96		

The numbers adjoined to the figures of the molecules are the squared coefficients of the atomic orbitals involved in the corresponding molecular orbital multiplied by 100.

values for the LUMO energy in the different 5-nitroimidazoles, that few variations of the energy levels are found. Even when the configuration in the molecules increases the delocalization of

TABLE 2

Compound λ Oscillator strength Main configuration squared coefficient	Occupied Molecular Orbital	Unoccupied Molecular Orbital
(I) 220 nm 0.0961 0.93		
(II) 334 nm 0.702 0.95		
(II) 252 nm 0.1511 0.83		
(II) 241 nm 0.0848 0.69		
(II) 223 nm 0.2795 0.95		
(III) 350 nm 1.005 0.90		
(III) 280 nm 0.230 0.79		

The numbers adjoined to the figures of the molecules are the squared coefficients of the atomic orbitals involved in the corresponding molecular orbital multiplied by 100 except for phenyl group where the number is the sum of the numbers for the six carbon atoms.

this orbital changes very little. If we consider the squared coefficients (for which the total values are equal to one), of the molecular orbital in the different atoms, it is possible to

TABLE 3

Compound	I	II	III	IV	V	VI
Experimental λ (nm)	310 230	340 235	355 270	296	289	301
				(2)	(2)	(2)
$\log \epsilon$	3.95 (s)	4.04 4.05	4.17 4.05	3.90	3.84	3.84
Theoretical λ (nm)	310 238	334 252	350 280	301	290	302
	222	241				
	220	223				
Oscillator strength	0.49 0.02	0.70 0.15	1.00 0.23	0.47	0.23	0.22
	0.31	0.08				
	0.10	0.28				
(s)=shoulder						

find that only 6% of this orbital on the extra cyclic double bond of compound II (with two methyl groups) and 16% in the case of compound III (with a methyl and a phenyl groups on the double bond). The situation is dramatically different for the HOMO whose energy changes significantly and for the delocalization in function of the substituents on the double bond which varies between 25 and 49%. The change in the HOMO energy level (Table 4) is consequently the essential reason for the bathochromic effect observed with an increase in conjugation.

The second transition observed for I and II is more difficult to explain. This transition is observed at 230 nm as a shoulder for the first compound and a band at 235 nm for the second.

TABLE 4

Compound	I	II	III	IV	V	VI
HOMO energy (e.v.)	-9.54	-9.00	-8.77	-9.82	-9.78	-9.47
LUMO energy (e.v.)	-2.20	-2.17	-2.25	-2.35	-2.16	-2.08

Calculation gives a first transition relative to an oscillator strength with a value different to zero at 238 nm, a second transition at 222 nm which finds its origin in electronic transition from an orbital centered on oxygen atoms of nitro group to LUMO, and a third transition at 220 nm. For the compound II, the observed transition is at 235 nm, and the calculations give three transitions in this region of absorption at 252 nm, 241 nm and 223 nm, this last transition involving oxygen atoms of nitro group in the occupied orbital. All these transitions are $\pi \rightarrow \pi^*$ type transition.

For the compound III with a phenyl group on the double bond the second transition is found experimentally at 270 nm and computed at 280 nm. Its origin is essentially in a configuration relative to an electronic transition from the HOMO to a completely delocalized orbital with 39% of electronic density in phenyl group, 26% in the extracyclic double bond and 20% in the nitro group. This transition is also a $\pi \rightarrow \pi^*$ type transition.

The uv absorption spectra of isomeric 1-methyl-4- and 5-nitroimidazole IV and V show experimentally a small bathochromic effect which is also found by calculations. This bathochromic effect results primarily from a lowering in LUMO energy level. The energy level of the HOMO decreases also but less markedly.

The bathochromic effect resulting from the substitution of a hydrogen atom by a methyl group in position 2 agrees satisfactorily with calculations.

Calculations for all these molecules give $n \rightarrow \pi^*$ type transition, whose transition moment is zero at about 500 nm, which means that these transitions are forbidden transitions and are not observed experimentally. It should be pointed out that the selection rules are not absolute and that perturbation of the molecular states by intermolecular vibration, by collision, and by association with other particles tend to relax these rules. The nitroimidazoles are always yellow or pale yellow in solid state and this colour may possibly be caused by these transitions.

CONCLUSION

The results of calculations agree very well with experimental results for two 4-nitroimidazoles V and VI or for the 5-nitro imidazole (I). Compatible results are also obtained for other 5-nitroimidazoles II, III and V.

The bathochromic effect observed experimentally for the first transition with the extension of conjugate system corresponds closely to the results obtained by calculations.

These calculations will be completed by further work in this field with a view to studying more complex molecules.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to CNRS for grants (PIRMED AIP/06931/1173 and PVD AI/06943/8025) and Rhône Poulenc Santé for generous support.

REFERENCES

- (1) M.P.CROZET, J.M.SURZUR, P.VANELLE, C.GHIGLIONE and J.MALDONADO
Tetrahedron Lett., 26, 1023, (1985).
- (2) M.D.NAIR and K.NAGARAJAN, Nitroimidazoles as Chemotherapeutic Agents in "Progress in Drug Research" E.JÜCKER Ed., Birkhäuser Verlag, Basel, Vol.27, pp.163-252, (1983).

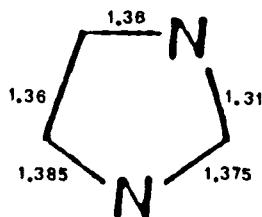
(3) J.DEL BENE and H.H.JAFFE, J.Chem.Phys., 48, 1807, (1968).

(4) P.A.DOBOSH, CNINDO, Q.C.P.E. n°141.

(5) M.ROCHE, Thesis (Marseille) 1969.

Date Received: 05/30/86
 Date Accepted: 07/17/86

APPENDIX

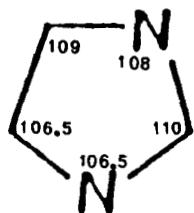

Distances (Angstroms)

C-H except CH_3 : 1.09
 1.08

N-D C-NO₂ N-CH₃ C-CH₃
 1.25 1.40 1.41 1.53

C-C in phenyl group
 1.39

C-C=C-C₆H₅
 1.50 1.35 1.50



Angles (degrees)

For sp^2 carbon atom and nitrogen atom all valence angles are 120

except for imidazole cycle.

For methyl group all valence directions are equivalent.

